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A B S T R A C T   

This paper employs regression with ARIMA errors (RegARIMA) to quantify the impacts of multiple non- 
pharmaceutical interventions, daily new cases, seasonal and calendar effects, and other factors on activity 
trends across the timeline of the ongoing COVID-19 pandemic in Japan. The discussion focuses on two contro-
versial policy sets imposed by the Japanese government that aim to contain the pandemic and to stimulate the 
recovery of the economy. The containing effect was achieved by stay-at-home requests and declaring a “State of 
Emergency” in the combat against the first waves of infectious cases. After observing reduced cases, Go-to-travel 
and Go-to-eat campaigns were launched in July 2020 to encourage recreational travel and to revive the economy. 
To better understand the impact of the policies we utilize “Google trends” which measure how much these 
policies are looked up online. We suggest this reflects how much they are part of the public discussion. A case 
study is conducted in Kyoto, a city famous for tourism. The proposed RegARIMA model is compared with linear 
regression and time series models. The outperformances in measuring the magnitude of intervention impacts and 
forecasting the future trends are confirmed by using a total of twelve activity and mobility indices as the 
dependent variable. Nine indices are released by Google and Apple and three are obtained from local Wi-Fi 
packet sensors. The effect of the State of Emergency declaration is found to erode at the second implementa-
tion, and the second stage of the Go-to-travel campaign successfully stimulated travel demand in the autumn 
sighting season of 2020.   

1. Introduction 

In the combat against the globally-spreading COVID-19 pandemic, 
more than a hundred countries have taken actions to restrict human 
mobility and activities by the end of March 2020 (Parady et al. 2020). 
Hale et al. (2020) provide a list of countries that have implemented a 
wide range of containing policies such as school closure, workplace 
closure, public transportation closure, stay-at-home requests, re-
strictions on public gatherings and events, and so forth. In this paper, we 
focus on the COVID-19 timeline of Japan. Japan initially experienced 
containing stages against the first wave of infectious cases from March 
2020 to May 2020, a restriction-free period with policies to encourage 
mobility and activities during July 2020 and December 2020 regardless 
of a second wave, and has been under changing restrictions for a long 
period since January 2021 due to the third and fourth waves as well as 
Tokyo Olympic Games. Table 1 summarizes the key events and the in-
terventions implemented in the COVID-19 timeline of two Japanese 

cities, Tokyo and Kyoto. For some policies we can observe a small lag of 
Kyoto compared to Tokyo. 

Among the policies implemented in Japan, there are four types of 
non-pharmaceutical interventions: school closures, stay-at-home re-
quests, declarations of a “State of Emergency”, and “Quasi-Emergency 
Measures”. All of these have the goal to contain the pandemic by 
imposing restrictions on human mobility and activities. The distinctions 
between the latter two policies are mainly as follows: Firstly, venues 
allow up to 50% of the capacity or 5000 people to attend a public 
gathering under State of Emergency, while Quasi-Emergency Measures 
allow 100% of the capacity to be used if the audience does neither cheer 
nor interacts directly in other ways. Secondly, in a State of Emergency all 
the recreational venues providing alcoholic beverages and karaoke 
services are closed. Other recreational venues, such as restaurants and 
cafes, are requested to shorten business hours and close no later than 8 
pm. These requirements on closure and business hour shortening are 
loosened to some degree under Quasi-Emergency Measures. Note that 
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the State of Emergency was only imposed on Tokyo and Okinawa during 
12 Jul 2021 and 22 August 2021 in response to high infection cases and 
the Tokyo 2020 Olympic Games, and then extended to 12 September 
2021 as well as to several other regions including Kyoto since 20 August 
2021 due to the fierce fifth wave. Later a nationwide extension to the 
end of September was issued. Accordingly, we can observe in Table 1 
that the restrictions in 2021 frequently switch between a full State of 
Emergency and Quasi-Emergency Measures. These switches are mainly 
driven by the desire to balance pandemic containment needs and to 
avoid economic recession. The desire to “quickly return to normality” is 
evident in the policies as early as July 2020. The “Go-to-travel 
Campaign”, an intervention to stimulate mobility and activities related 
to casual travel, is a noteworthy feature of the COVID-19 timeline in 
Japan. 

Not only in Japan but worldwide, governments are struggling to 
understand the right timing to remove or lessen restrictive non- 
pharmaceutical interventions and to possibly start promoting certain 
activities again. Japan is among the first to launch a series of such 
activity-stimulating interventions. Our objective is neither to cast criti-
cism nor approval on this policy. Given the changing nature of the 
ongoing COVID-19 pandemic and the multidimensional challenges to 
the policy makers, it is demanding to require a definitive correct answer 
to the question of how to contain the pandemic while maintaining the 
economy. Our goal is to support this discussion by quantifying the ef-
fects of the implemented policies and sharing the lessons learned from 
the combat against COVID-19 in Japan. 

In this paper, we develop a regression model with time series errors 
that follows classical intervention models proposed by Box and Tiao 
(1975) and Tsay (1984). The contributions to the worldwide community 
and existing literature are threefold: (1) We suggest this is an approach 
to produce less biased estimates for the effects of the policies imple-
mented in the COVID-19 timeline than we found in other papers; (2) we 
show that we can forecast future mobility and activity trends at an 
acceptable accuracy; (3) We extract some lessons learned from the 
unique timeline of Japan characterized by the aforementioned local and 
interregional travel demand stimulating policies. These methodological 
and practical findings are believed to benefit policy makers. 

Cities holding tourism as an important economic driver are antici-
pated to be more sensitive to the aforementioned two diverging policy 
sets and mobility patterns in such cities are more fluctuating 
(Schmöcker, 2021). This is motivating our choice for Kyoto as our case 
study. We select 15 February 2020 to 2 April 2021 as the observational 

period in order to exclude the effect of pharmaceutical interventions 
such as vaccination. By 2 April 2021, less than 1% of the Japanese 
population in Japan was vaccinated and this rate was close to zero for 
Kyoto as the vaccination in Kyoto officially started on 12 April 2021 
(Government CIO portal, 2021). 

The remainder of this paper is organized as follows. Section 2 re-
views the studies concerning the impacts of the ongoing COVID-19 
pandemic on human mobility and activity patterns and travel 
behavior. Section 3 discusses intervention models with time series data 
and explains the suitability of regression models with time series errors 
for the studied problem. Section 4 provides details on the selection and 
data processing of the dependent and independent variables. A focus of 
this section is the implementation of Google trends data to better reflect 
exogenous policy variables. We show that the consideration of trending 
is useful for a range of policies. Section 5 reports the estimated magni-
tude and significance of the exogenous variables, discusses policy im-
plications, and presents the forecasted future trends of higher accuracy 
than benchmark models. The conclusion and suggestions for future 
research directions given the limitations of this paper and the concerns 
on the current pandemic situation in Japan can be found in Section 6. 

2. Literature review 

This unprecedented pandemic has been globally shaking the status 
quo of human society in a variety of aspects. Narrowing the focus on 
human mobility and travel behavior, intervention implementation to 
contain the spread of the coronavirus has been decreasing travel demand 
and reshaping travel behavior. Human mobility is known to be a critical 
driver for the spread of this infectious disease (Merler and Ajelli, 2010; 
Kraemer et al. 2019; Wei et al. 2020). Non-pharmaceutical interventions 
therefore mainly restrict human mobility and activity. Flaxman et al. 
(2020) and Lai et al. (2020) illustrate the effects of non-pharmaceutical 
interventions on reducing cases and deaths by comparing actual and 
virtual scenarios of different interventions and timings. Interventions 
falling into this category can be soft policies such as stay-at-home re-
quests relying on self-regulation. They can be upgraded to harder ones 
such as a declaration of an emergency state shortening business hours, 
closures of recreational places, or even full-scale “lockdowns” of areas. 
To note is that in Japan COVID restricting policies were never as strin-
gent as in other countries, for example, there were never penalties 
imposed on private gatherings. The government mainly relied on the 
collaboration of the population. 

Policy impacts are worth attention not only for their immediate ef-
fects but also for possibly profound, longer-term impacts leading to a 
different “new normal” in post-COVID periods. The changes may be 
twofold: model preference and trip purpose. Beck and Hensher (2020a, 
2020b) investigate the effect of restricting interventions carried out in 
Australia on travel behavior, using longitudinal surveys in the days 
under and right after the restrictions. They confirm the reduction in 
travel demand and the change in mode preference driven by the re-
strictions and the pandemic itself. Their latter work finds that the trips 
by private car rebounded much more significantly than by public 
transport in the days when the restrictions were eased. Jenelius and 
Cebecauer (2020) provide evidence on the drop of public transport 
ridership using the data of passenger counts and fare collection in 
Stockholm, Sweden. Eisenmann et al. (2021) report travel survey results 
in Germany and quantify the preference of people to travel by private 
car in the lockdown period. Luan et al. (2021) mention that the ride- 
hailing industry in China was heavily hit by the pandemic. Note that 
these studies show the changes in model preference triggered by the 
pandemic but that the definite form in post-COVID times remains vague 
and dependent on, among others, what actions are taken by stakeholders 
such as transport service providers. 

Parady et al. (2020), Abdullah et al. (2020), and Shakibaei et al. 
(2021) emphasize the short-run changes in travel purpose before and 
during the COVID-19 pandemic using surveys. Parady et al. (2020) find 

Table 1 
Key interventions and dates in the COVID-19 timeline of Tokyo and Kyoto.  

Interventions Date – Tokyo Date – Kyoto 

School closure 2 March 2020 – 31 May 
2020 

5 March 2020 – 31 May 
2020 

Stay-at-home request 28 March 2020 – 31 May 
2020 

10 April 2020 – 31 May 
2020 

State of Emergency (1) 7 Apr 2020 – 25 May 
2020 

16 Apr 2020 – 21 May 2020 

Go-to-travel Campaign 
(1) 

N/A 22 Jul 2020 – 30 Sep 2020 

Go-to-travel Campaign 
(2) 

1 Oct 2020 – 28 Dec 2020 1 Oct 2020 – 28 Dec 2020 

State of Emergency (2) 8 Jan 2021 – 21 Mar 
2021 

14 Jan 2021 – 28 Feb 2021 

Vaccination 12 April 2021 – present 12 April 2021 – present 
Quasi-Emergency 

Measures (1) 
12 April 2021 – 24 April 
2021 

12 April 2021 – 24 April 
2021 

State of Emergency (3) 25 Apr 2021 – 11 May 
2021 

25 Apr 2021 – 11 May 2021 

Quasi-Emergency 
Measures (2) 

12 May 2021 – 11 July 
2021 

12 May 2021 – 11 July 
2021 

Quasi-Emergency 
Measures (3) 

N/A 2 August 2021 – 19 August 
2021 

State of Emergency (4) 12 Jul 2021 – 30 
September 2021 

20 August 2021 – 30 
September 2021  
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that in the early stage of COVID-19 non-essential grocery shopping and 
eating-out demand in the Kanto region of Japan was effectively 
restricted by self-regulation and soft governmental requests. Abdullah 
et al. (2020) receive survey results from various countries via social 
media, and their data show that 56.6% of the 1203 respondents never go 
to office or college due to COVID-19. Instead, the respondents’ primary 
trip purpose shifts from working to shopping. Shakibaei et al. (2021) 
confirm a sharp reduction in commuting, social/recreational/leisure, 
and shopping demand in Istanbul. The pattern that the commuting and 
recreational travel demand recover in the long term is considered to rely 
on future policies, such as whether teleworking and online education 
will be encouraged in post-COVID, whether policies will be imple-
mented to increase leisure trips. Therefore, tracking behavior changes 
over a longer-term is required to provide better predictions. 

The above literature informs policy makers of the current situation 
and the future trend of travel demand and mode preferences. Yet, the 
causality interpretation on the relationship between policies and 
mobility changes remains insufficient. Other researchers attempt to es-
timate the effect of COVID-19 policies and forecast future mobility 
trends using a range of passive data in line with the approach taken in 
this paper. Multiple open datasets ease the difficulties in tracking policy 
implementations and mobility changes in time series. The Oxford 
COVID-19 Government Response Tracker (OxCGRT) provides an open 
dataset that contains a time series of stringency indices for a variety of 
countries (Hale et al. 2021). These indices include the anticipated 
strength of each policy and the overall stringency level of a country. 
Activity and mobility indices are publicly released by Google and Apple, 
which will be elaborated in Section 4. As an overview of the relationship 
between governmental COVID-19 policy and human mobility, we refer 
to McKenzie and Adams (2020) who calculate the similarity between 
national stringency and mobility indices for 108 countries. They further 
illustrate how the pattern of human response to containing policies 
varies from country to country by a cluster analysis. Chan et al. (2021) 
also use OxCGRT and mobility indices to uncover the interactions 
among policy, mobility, and infectious cases in Hong Kong by a Granger 
causality analysis. 

To further understand human response to a specific policy and to 
allow for inter-policy comparison, our subsequently proposed model 
distinguishes the effect of individual policies by employing policy- 
specific exogenous variables. Regression with time series errors is used 
to address the model misspecification incurred due to serially correlated 
observations and therefore to provide less biased policy effects. A related 
research is conducted by Hu et al. (2021). Their work measures the ef-
fect of multiple stay-at-home orders imposed in the United States by a 
generalized additive mixed model. They apply the model with spatial 
errors to the whole country while our paper focuses on a single city 
considering the lag of local policies coming into force compared to na-
tional announcements. In addition to policies, we consider that the 
number of infected cases itself has a certain restrictive power on daily 
mobility as also proposed in Suzuki and Utsumi (2021). As the popula-
tion in Japan and other countries is frequently exposed to the latest local 
and national infection records broadcasted via TV news, website head-
lines, and social media trends, their behavior will to some degree 
respond to the potential infection risk according to the virus spread. 

3. Models 

In this section, we discuss models to quantify the effects of in-
terventions on a dependent time-series variable in general. Let Yt denote 
the dependent variable at time t, Xt denote the set of exogenous vari-
ables at time t, and β be a vector to represent the marginal effect of each 
variable in Xt. We suppose that …, Yt− 1, Yt, Yt+1, … are time series 
observations with identical time intervals. A general form of interven-
tion models can be obtained as in Eq. (1) to capture the relationship 
between the dependent time-series process and exogenous time-series 
processes, where Zt is the noise. Eq. (1) allows for either linear or 

nonlinear assumptions on the relationship and various assumptions on 
the noise term. The general form is first proposed in a seminal study on 
intervention models by Box and Tiao (1975) and can also be found in 
Tsay (1984). 

Yt = f (Xt, β)+ Zt (1) 

One can assume Zt to be white noise and therefore to be independent 
and identically distributed random variables. However, Box and Tiao 
(1975) point out that the successive observations in a time series are 
usually serially correlated. This results in a dependent structure of noise 
which may violate this basic assumption. They instead model the noise 
with a mixed autoregressive moving average (ARMA) process. Tsay 
(1984) extends this discussion on ARMA errors by considering Zt as an 
unobservable time series process and allowing it to be nonstationary. A 
procedure to determine the order of the ARMA model for Zt is also 
provided in Tsay (1984). 

Given the time series observations after the interventions come into 
force, it is difficult to explicitly distinguish the isolated impacts of in-
terventions and to distinguish the influence of the prior days on a certain 
observation. We consider the collection of regression models specifying 
a time series process for the errors suitable to answer our research 
questions. In this paper, we attempt to illustrate the usefulness of 
regression models with ARIMA errors (RegARIMA) in measuring the 
impact of the afore-mentioned interventions. We assume a linear rela-
tionship for the dependent and exogenous time-series processes. For 
comparison purposes, we introduce linear regression (LR) models and 
autoregressive integrated moving average models with exogenous var-
iables (ARIMAX) as benchmark methods. The model specification for the 
RegARIMA and LR models can be found in Eq. (2). For the LR model, Zt 
is simplified to be white noise εt which follows a normal distribution 
having mean zero and variance (σε)

2. 

Yt =
∑k

i=1
βiXi,t + Zt (2) 

We select an ARIMA (1,0,0) order for the time series errors of the 
RegARIMA model according to the results of the residuals analysis. The 
model specification of the error term therefore becomes Eq. (3) with an 
ARIMA (1,0,0) process specified for the errors Zt, where B is the back-
shift operator (also often referred to as lag operator L), φ1 is the autor-
egressive coefficient of this (1,0,0) process and can be written as AR(1). 
White noise εt remains after the original noise Zt is explained by a first- 
order autoregressive process. A comprehensive discussion on the ARIMA 
process and its general forms can be found in Box et al. (2015). 

(1 − φ1B)Zt = εt (3) 

The same ARIMA order is applied to an ARIMAX model whose 
specification is shown in Eq. (4). The nuances between LR, RegARIMA, 
and ARIMAX can be further clarified by comparing the specification of 
the three models. The difference between LR and RegARIMA mainly is 
due to the assumption specified for the noise, while ARIMAX differs from 
RegARIMA by imposing the backshift operation on the dependent var-
iable instead of the noise. This subtle distinction between RegARIMA 
and ARIMAX explains why the coefficients estimated by RegARIMA are 
considered more interpretable than ARIMAX. 

(1 − φ1B)Yt =
∑k

i=1
βiXi,t + εt (4)  

4. Data analysis and variable selection 

This section provides detailed descriptions of the variables we use in 
the models. The reasons and data support for variable selection are also 
discussed. 
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Fig. 1. Daily new cases of COVID-19 in Japan and non-pharmaceutical interventions.  

W. Sun et al.                                                                                                                                                                                                                                     



Transportation Research Interdisciplinary Perspectives 13 (2022) 100551

5

4.1. Dependent variables 

4.1.1. Google mobility indices 
In response to the public health challenges of this unprecedented 

pandemic, Google released COVID-19 Community Mobility Reports for 
various countries since February 2020 and updates them regularly to 
assist the policy makers to contain the spread (Google, 2020a). Ac-
cording to Google, this data are generated by using the same raw data 
that are used for Google’s “Popular times” service, and the raw data are 
based on the users who have opted in to Google Location History 
(Google, 2020b). These reports have been used by a number of studies 
for an overview regarding the impacts of COVID on human activities in 
the studied country or region (Beck and Hensher, 2020a, 2020b; Jene-
lius and Cebecauer, 2020; Parady et al., 2020). A few studies use the 
data to analyze the behavioral changes during the COVID-19 timeline 
(Cot et al. 2021; Chan et al. 2021). In this paper, we refer to this data as 
“Google Mobility Indices”. For each day since middle February 2020, a 
percentage change of the visits to a specific category of places is pro-
vided by this data, and the percentage change is compared with a 
baseline shortly before the outbreak of the pandemic. More specifically, 
the published percentage change for a specific date is the difference of 
visits between this day and the average visits on the corresponding day 
of the week during the five weeks between 3 January and 6 February 
2020. As the baseline is the visits in a fixed month, one has to control the 
effects of season and temperature in the analysis. These Google Mobility 
Indices are available for six activity/mobility categories: Retail & rec-
reation, Grocery & pharmacy, Parks, Transit station, Workplace, and 
Residential. For many countries, the index per category is further 
divided into regions and sub-regions. For Japan, the six indices per 
category are available at prefecture-level, including Kyoto prefecture, 
since 15 February 2020. 

4.1.2. Apple mobility indices 
For similar purposes, Apple started publishing COVID-19 Mobility 

Trends Reports (Apple, 2020). In this paper we refer to them as “Apple 
Mobility Indices”. They are based on the searches via Apple Maps. Apple 
re-scales the searches by taking the searches on 13 January 2020 as 100 
and the baseline. Apple Mobility Indices are broken down into three 
categories in line with the transportation modes available on Apple 
Maps: Driving, Transit, and Walking. We note that these search data may 
be different from the number of real trips. The data are also available for 
Kyoto prefecture and per transport mode. To make the data comparable 
with Google Mobility Indices, the data are processed into percentage 
changes from the corresponding day of the week by using the mean 
value in January as the baseline. 

4.1.3. Wi-Fi mobility indices 
To obtain more detailed information regarding mobility changes at 

specific, important places in Kyoto we furthermore use information from 
Wi-Fi packet sensors. The raw data are the probe requests sent by 
portable electronic devices for Wi-Fi access captured by the sensors 
installed at specific places. The number of received probe requests 
therefore can be considered to reflect the busyness of a place. Twelve 
sensors in total are installed throughout Kyoto City, ten of which have 
complete data availability in the studied COVID-19 timeline of this 
paper. The sensors are located at the main tourist attractions, the central 
business district, and Kyoto Station which is the most important railway 
station in the city. More details regarding the sensor locations and the 
data collection mechanism can be found in Gao (2021). We select the 

data of three sensors as the dependent variables: Kiyomizu Temple 
which is one of the most famous and frequently visited tourist attrac-
tions in the city, Nishiki Market which is located in the central business 
area of the city and has a collection of restaurants, and Kyoto Station. 
Kyoto station is the portal for most visitors coming to Kyoto except for 
those from the surrounding cities, in particular Osaka. 

In summary, six Google Mobility Indices, three Apple Mobility 
Indices, and three Wi-Fi Mobility Indices are employed as the dependent 
variables. All of them are processed into percentage changes from the 
baseline in January 2020. Twelve models are therefore respectively 
fitted for LR, RegARIMA, and ARIMAX. 

4.2. Independent variables 

4.2.1. Daily new cases 
It can be seen in Fig. 1(d) that both times the declaration of a State of 

Emergency in Japan lagged behind the peak of the first and third waves 
of domestic daily new cases. We note that a correlation between inde-
pendent variables is introduced if both daily new cases and interventions 
are taken into the set of exogenous variables, as the soaring cases usually 
persuade the intervention implementation. Regardless of this, we 
include daily new cases into the set of independent variables X. Another 
concern is that the impact of daily new cases on human mobility may not 
be linear. Therefore, we first take a common logarithm for daily new 
cases and then take the moving average of the past seven days. A 
noteworthy fact is that the daily new cases in Japan, Kyoto, Tokyo, and 
Osaka are statistically correlated, independent as to whether the original 
or processed values are used. The pair-wise correlation coefficient is 
always > 0.8. We therefore only keep the cases in Japan in the set of 
independent variables and drop the other three, although the pandemic 
situations in Kyoto and other major cities with a strong connection to 
Kyoto are supposed to be influential on the activity trends in Kyoto. 

4.2.2. Temperature and precipitation 
The mobility demand tends to be influenced by weather conditions, 

in particular in Kyoto with its distinctive seasons. Here we use temper-
ature and precipitation as two weather indicators. To make them com-
parable with the dependent mobility indices which all have a January 
2020 baseline, the weather indicators in January 2020 are taken as the 
baseline and the baseline means are calculated by day of the week. The 
changes in temperature and precipitation from the baseline are used as 
independent variables in the models. 

4.2.3. Seasonal and calendar effects 
To account for other seasonal and calendar effects during the studied 

period, weekends, holidays, and two conventional sightseeing seasons 
are converted to dummy variables. Kyoto City is globally and domesti-
cally known for its tourism. The harmonious combinations of natural 
scenery and historical architecture characterize the unique and 
impressive sightseeing experience in Kyoto City, attracting explosive 
numbers of tourists especially in spring and autumn. The two sightseeing 
dummies are in line with the period for viewing cherry blossom and 
maple leaves in spring from 16 March to 15 April and in autumn from 16 
November to 15 December. 

4.2.4. Intervention policies and Google trends 
It is common to interpret an intervention as a dummy variable by 

using one to represent its presence if time t is within the time window of 
the intervention and zero to denote the absence if it is out of the time 
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window. In this paper we attempt to demonstrate that the consideration 
of people’s adaptation process to the interventions can measure the ef-
fects more properly. Given a pandemic situation and the request type 
policies without much enforcement we suppose that the population 
gradually adjusts its behavior around the time in which the containing 
policy comes into effect. To capture the emergence of behavior changes 
in mobility as well as the date of the emergence, Google trends data 
relevant to the intervention policies are employed. The numbers of 
searches for a specific keyword in a time period are rescaled within 
0 and 100 by Google trends (Google, 2020c). The data are on a weekly 
basis and are thus linearly interpolated to a daily basis in this paper. It is 
found in Fig. 1 that the searches of a keyword always reach the peak 
several days prior to the starting day of the pandemic containing pol-
icies. The exogenous variable of a specific containing intervention is 
therefore synthesized by combining the search data and the policy 
window. For a containing intervention, we apply a piecewise function as 
in Eq. (5) to synthesize the exogenous variable, where “→” is an operator 
to compute the days from the left term to the right term. Logit functions 
are used to model the process of gradual adaptation and dropout. We 
therefore have ones for time t within the policy window and values from 
zero to one for the days before and after the intervention. The policy 
strength is assumed to keep the maximum level of 100% during the 
policy window and a single policy window is not divided into phases. We 
assume that the effect of the policy would be 50% of the full effect at the 
time point when the relevant searches reach the peak. The parameter m 
controlling the 0.5 point of the logit functions in Eq. (5) is hence ob-
tained by differencing the date of the intervention start and the date of 
the searched peak. Stay-at-home requests and declarations of a State of 
Emergency are taken as three exogenous variables. The two times of the 
State of Emergency are used as separate variables, in order to investigate 
whether there is a potential “tiring” or “fade-out” effect of this con-
taining policy. The converted exogenous variables are illustrated by 
dotted lines in Fig. 1(c) and 1(d). As the State of Emergency is consid-
ered an upgrade of the Stay-at-home request, we use the difference be-
tween the logit curves of these two policies for the variable of the Stay- 
at-home request during its overlapping days with the State of Emer-
gency. As a result, the variable of the Stay-at-home request values zero 
during the overlapping days as shown in Fig. 1(c) and the impacts on 
mobility changes during that period are attributed to the declaration of 
the State of Emergency. 

xi,t,i∈S =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
1 + exp((dstart→t) − m )

, if t < dstart

1, if dstart ≤ t ≤ dend

1
1 + exp((t→dend) − m )

, if t > dend

(5) 

Another set of interventions introduced in Japan are the policies to 
stimulate mobility and associated consuming activities to promote the 
recovery of the economy. The first stage of this policy provides 35% 

discount on the total travel expense for those who make domestic leisure 
travels. Fig. 1(e) shows the search trend of “Go-to-travel Campaign” 
which is the major policy of this category. Different from the containing 
policies, this policy never received as much attention neither prior to the 
starting date nor during its first stage. People’s attention drastically 
increased at the start of its second stage where special coupons that 
allow for a further 15% discount to the travel expense. Another differ-
ence is that during this second stage the visits to the neighboring pre-
fecture also qualified one to apply for the discount. The adaptation 
process considered for containing policies and Eq. (5) are not suitable for 
this stimulating policy. The differences are manifold. Firstly, a behav-
ioral response to the policy is not mandatory for anyone. Secondly, the 
action of making a journey motivated by this policy is more likely to lag 
compared to the search trend. Thirdly, mobility indices receive no in-
fluence of this policy before or after the campaign window since no 
discount or gift is released. Therefore a moving average search trend of 
the past seven days of time t is computed and divided by 100 to represent 
this policy as the associated exogenous variable to the model. 

In the following case study, two LR models are used to illustrate the 
improvement by considering the adaptation processes for the containing 
policies. LR1 uses dummy policy variables and LR2 uses the synthesized 
policy variables. With the improvement confirmed, the synthesized 
policy variables are applied to RegARIMA and ARIMAX models. We 
conclude this section by noting that we do not include any intercept for 
the models since we assume no independent constant percentage change 
from the baseline. 

5. Results and interpretation 

As is mentioned in Section 1, the studied timeline is from 15 
February 2020 to 2 April 2021. The starting date is due to the data 
availability of the dependent mobility indices. The data during 15 
February 2020 and 28 January 2021 are used as the sample data, and the 
data after 28 January 2021 are used as the test data for forecasting. The 
model estimation of LR1, LR2, ARIMAX, and RegARIMA is conducted by 
Matlab R2021a. The latter two models are estimated by the Econometric 
Modeler of Matlab R2021a. All the mobility indices in the studied time 
series pass the augmented Dickey-Fuller test (Dickey and Fuller, 1979) 
at a significance level of 0.05 except for Nishiki Market whose p-value is 
0.057. As this is still close to the required significance level, we regard 
all the dependent time series processes as stationary or trend-stationary. 

5.1. Model fit 

Four indicators are selected to evaluate the model fit: Akaike infor-
mation criterion (AIC), Bayesian information criterion (BIC), Root Mean 
Square Error (RMSE), and R-squared. The former two indicators are 
commonly used to evaluate the model fit for models incorporating time 
series processes and are estimated using the maximum likelihood mea-

Table 2 
Model fit of the proposed RegARIMA and three benchmark models.   

AIC RMSE 

LR1 LR2 ARIMAX RegARIMA LR1 LR2 ARIMAX RegARIMA 

Retail & recreation  2265.18  2252.33  2189.70  2152.46  6.16  6.05  6.22  6.07 
Grocery & pharmacy  2123.52  2130.55  2099.65  2073.82  5.03  5.08  5.14  5.04 
Parks  2828.11  2832.19  2795.76  2794.32  13.84  13.92  13.82  13.82 
Transit station  2253.60  2193.74  2105.70  2047.21  6.06  5.56  5.68  5.67 
Workplace  2321.76  2329.91  2240.48  2254.73  6.69  6.76  6.40  6.71 
Residential  1459.40  1462.41  1388.33  1400.59  1.94  1.95  1.86  1.92 
Driving  3010.83  2975.19  2706.90  2723.65  17.99  17.10  19.19  17.85 
Transit  3268.59  3228.42  2870.91  2900.33  26.06  24.60  27.48  25.93 
Walking  3009.97  2942.88  2588.21  2623.11  17.97  16.32  17.29  16.81 
Kiyomizu Temple  3164.89  3090.51  2788.56  2801.28  22.45  20.18  19.80  28.13 
Nishiki Market  2800.42  2736.69  2472.15  2496.35  13.30  12.14  12.69  13.10 
Kyoto Station  2524.32  2437.39  2271.81  2244.97  8.94  7.89  7.97  7.90  
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Table 3 
Estimation results of RegARIMA, significance codes: p-Value ≤ 0.01***, 0.05**, 0.1*   

Google Mobility Index (%) Apple Mobility Index (%) WiFi Mobility Index (%) 

Retail & recreation Grocery & 
pharmacy 

Parks Transit station Workplace Residential Driving Transit Walking Kiyomizu 
Temple 

Nishiki Market Kyoto Station 

Daily new cases  − 4.28***  − 0.37  − 7.21***  − 9.77***  − 5.40***  2.61***  − 2.58  − 8.08*  − 7.04**  − 19.36***  − 9.94***  − 4.97*** 
Weather 
Temperature (◦C)  0.11  0.24***  0.87***  − 0.02  − 0.05  − 0.02  0.05  − 0.46  − 0.08  0.54**  − 0.13  0.19* 
Precipitation (mm)  − 0.18***  − 0.21***  − 0.71***  − 0.11***  − 0.07*  0.06***  − 0.03  − 0.04  − 0.05  − 0.27***  − 0.02  − 0.01 
Seasonal and calendar effects 
Weekend  − 2.44***  0.73  − 6.59***  − 8.80***  − 0.02  − 0.92***  − 1.87  − 0.35  − 0.52  3.26**  − 0.40  − 6.20*** 
Holiday  10.52***  0.28  26.57***  − 14.87***  − 39.58***  9.95***  − 1.19  − 2.68  − 1.72  6.29***  − 4.06***  − 4.84*** 
Spring  7.78***  4.23**  27.58***  6.93***  6.53*  − 2.93***  16.79*  29.78***  15.28*  16.36  10.44  11.23*** 
Autumn  2.85  1.69  10.79**  2.70  4.04  − 1.51  2.77  8.30  1.11  14.08  − 1.30  − 5.75** 
Policies 
Stay-at-home  − 9.35***  − 1.59  − 5.54  − 12.46***  − 2.82  2.70**  − 15.69  − 15.57  − 17.64*  − 24.27*  − 25.46***  − 12.52*** 
State of Emergency 

(1)  
− 26.35***  − 4.64***  − 8.13**  − 26.25***  − 11.65***  7.02***  − 38.52***  − 45.08**  − 45.90***  − 53.97*  − 43.34***  − 40.39*** 

State of Emergency 
(2)  

− 8.22**  − 4.96  − 2.51  − 1.15  6.23  − 2.07*  − 13.57  − 15.10  − 13.69  − 13.08  − 16.63  − 16.18** 

Go-to-travel(1)  1.69  − 7.27  − 3.13  14.12*  10.04  − 5.19*  62.76***  57.74*  65.87***  7.86  11.94  16.05 
Go-to-travel(2)  7.40**  0.69  22.20***  19.15***  11.44**  − 5.45***  43.50**  65.06**  59.09***  25.21  18.75**  13.50** 
Time series errors 
AR(1)φ1   0.53***  0.42***  0.36***  0.64***  0.47***  0.42***  0.76***  0.81***  0.80***  0.88***  0.77***  0.68*** 

Variance (σε)
2   26.23***  20.92***  165.89***  19.38***  35.19***  3.02***  135.40***  224.96***  101.43***  169.24***  70.46***  34.22*** 

Model fit 
AIC  2152.46  2073.82  2794.32  2047.21  2254.73  1400.59  2723.65  2900.33  2623.11  2801.28  2496.35  2244.97 
BIC  2206.40  2127.75  2848.25  2101.14  2308.66  1454.52  2777.58  2954.26  2677.04  2855.21  2550.28  2298.90 
RMSE  6.07  5.04  13.82  5.67  6.71  1.92  17.85  25.93  16.81  28.13  13.10  7.90 
R-squared  0.75  0.29  0.59  0.83  0.78  0.82  0.60  0.58  0.72  0.46  0.66  0.83  
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sure. Let L̂ be the maximum value of the likelihood function, n be the 
sample size, k be the number of parameters including variable co-
efficients, intercept, and error variance. With these definitions we obtain 
Eqs. (6) and (7) to compute AIC and BIC respectively. Lower values of 
AIC and BIC are favorable. Both AIC and BIC add a penalty for the 
number of parameters to adjust the model fit. RMSE and R-squared here 
are based on the difference between in-sample forecast values and 
observations. 

AIC = 2k − 2ln(L̂) (6)  

BIC = kln(n) − 2ln(L̂) (7) 

Table 2 compares the model fit of the RegARIMA model with the 
other three models. Only AICs are listed since AIC and BIC show the 
same tendency in this comparison. RMSEs are provided to show the in- 
sample forecast errors of the models. For most categories AIC and RMSE 
are decreased from LR1 to LR2, showing the effectiveness of using 

Google trends data to synthesize the policy variables. Moreover, sig-
nificant improvement is achieved by the two models more capable of 
describing time series data. We can observe a pronounced drop in AIC 
from LR2 to ARIMAX and RegARIMA for each mobility category. 
Considering the time-series nature of the data can account for this 
improvement in model soundness. It can be found in Appendix B that the 
significant autocorrelation in the residuals of LR2 is addressed by these 
two models incorporating an ARIMA process. Among these two models, 
each is superior in half of the categories with respect to AIC. We judge 
the RegARIMA model as preferred because the contributions of the 
exogenous variables to the dependent variable are considered to be 
“diluted” in the ARIMAX model by the time series term φ1 shown in Eq. 
(4). To illustrate this, comparing the estimation results of LR2 and 
ARIMAX in Appendix C with the results of RegARIMA in Table 3, one can 
find that the magnitude of the coefficients estimated by LR2 are similar 
to those obtained by RegARIMA while ARIMAX estimates much smaller 
coefficients than RegARIMA. Therefore, we report the estimation result 

Table 4 
Forecast performance of LR, ARIMAX, and RegARIMA.   

RMSE R-squared 

LR1 LR2 ARIMAX RegARIMA LR1 LR2 ARIMAX RegARIMA 

Retail & recreation  7.82  5.15  5.16  4.65  0.60  0.73  0.72  0.76 
Grocery & pharmacy  4.03  4.31  4.40  3.99  0.43  0.41  0.38  0.47 
Parks  14.17  14.16  14.08  13.85  0.66  0.66  0.65  0.67 
Transit station  8.80  4.00  4.15  4.02  0.28  0.80  0.78  0.81 
Workplace  3.97  3.94  4.31  3.76  0.78  0.79  0.75  0.80 
Residential  2.78  1.57  1.60  1.64  0.32  0.70  0.69  0.68 
Driving  31.13  22.94  24.48  23.95  0.66  0.78  0.76  0.82 
Transit  42.39  33.26  39.36  36.54  0.65  0.74  0.75  0.75 
Walking  31.57  21.11  25.54  22.64  0.64  0.80  0.80  0.81 
Kiyomizu Temple  54.53  44.38  47.91  52.94  0.64  0.76  0.85  0.83 
Nishiki Market  28.13  19.34  21.07  17.25  0.26  0.81  0.83  0.86 
Kyoto Station  23.51  17.30  18.20  17.85  0.81  0.82  0.79  0.83  

Fig. 2. Forecast results of RegARIMA model.  
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of our preferred RegARIMA model in Table 3, including the estimated 
coefficient and significance of each variable as well as the indicators of 
model fit. The results of other models can be found in Appendix C. For 
the variables related to time series errors, we report the coefficient of the 
autoregressive term and the variance of white noise εt. 

5.2. Measured impacts of policies and other factors 

The impacts of the five implementations or stages of three policies 
are measured by the model and reported in Table 3. The unit of the 
estimated coefficients is percentage as the dependent variable of the 
models is always the percentage change from a baseline in January 
2020. Among the policies, State of Emergency was used twice in the 
studied timeline, and we use the number in brackets to distinguish the 
first time and second time of this policy implementation. Also for the 
two Go-to-travel campaigns, the number in brackets is used to distin-
guish the different stages. 

Among the three implementations of restrictive policies, the first 
State of Emergency in general imposed the most significant impact in 
reducing mobility and activity demand. It reduced the activity at retail & 
recreational places by 26.35% and it reduced the visits of transit stations 
by 26.25%. Furthermore, it decreased workplace visits only by 11.65%, 
indicating that the working-from-home strategy had not been widely 
adopted by the companies during the initial waves of the pandemic. The 
impact of the first State of Emergency was not obvious for places cate-
gorized as grocery & pharmacy or parks. As these places mainly serve for 
daily minor shopping and leisure demand and are mostly less crowded, 
it is in line with our expectations that the associated visits were not 
strongly restricted by the State of Emergency. We also notice that for all 
categories the impact of the first implementation of the State of Emer-
gency was much more pronounced than the effect of the Stay-at-home 
request. 

For all activity categories, except for residential, the impact of the 
State of Emergency on restricting activities eroded significantly at the 
second implementation, such as from 26.35% to 8.22% for retail & 
recreation and from 26.25% sharply to 1.15% for transit station. This 
fading-away effect due to repeated implementations can be also 
observed in the results estimated from all the Apple indices. The 
measured effect magnitude on driving, transit usage, and walking 
compared to the baseline were all significantly less in the second stage. 
The coefficients for our models with the Wi-Fi mobility indices also 
confirm these trends. On average, the impact of the second imple-
mentation was one-third of the first one. 

We then turn our focus to the policies to stimulate travel demand. As 
noted before the second stage of Go-to-travel Campaign provided a more 
attractive discount therefore larger effects are explainable. For example, 
our model suggests that the second stage increased activities at transit 
stations by a significant 19.15%, whereas the effect of the first campaign 
is found to be only weakly significant at 14.12%. For the places 
considered to be likely target destinations of tourists, the second stage 
increased the visits by 7.4% at retail & recreation, 22.2% at parks, and 
25.21% at Kiyomizu Temple, which is a famous tourist attraction. The 
significance and magnitude for the variables of the second stage are in 
general much larger. 

Finally, the following observations on other influential factors 
appear also important: First, the increases in temperature and precipi-
tation imposed opposite effects on mobility. We note that the baseline is 
in January which is the coldest season of the year in Kyoto. Favorable 
weather with higher temperature and less precipitation significantly 

motivated the trips to open spaces such as parks and sightseeing places 
such as Kiyomizu Temple. The visits to parks were increased by 0.87% if 
the temperature was higher than that in January by 1 ◦C and decreased 
by 0.71% per 1 mm rainfall more than that in January. Second, as the 
baseline distinguishes workdays and weekends, the effect of weekend 
shows the difference of a weekend during COVID-19 from a weekend 
before COVID-19. It can be seen that the mobility generated on week-
ends was generally decreased during COVID-19. On the contrary, the 
baseline does not treat holidays differently so that the effect of holiday is 
amplified by comparing a holiday with a normal day; in particular the 
model estimates that holidays reduced the visits to a workplace by 
39.58%. Third, we can observe significantly positive effects of the two 
sightseeing seasons. The effect is found more pronounced in spring than 
in autumn. 

5.3. Forecast performance 

We now focus on the out-of-sample forecast performance of the 
models. RMSE and R-squared are used as performance indicators. 
Table 4 reports the indicators of each model and each mobility category. 
The unit of RMSE is percentage in this analysis as the dependent variable 
is the percentage change. The improvement from LR1 to LR2 shows the 
advantages of using the logit-transformed policy variables over the 
traditional dummy variable approach. It can be seen that the LR2 model 
produces more accurate predictions than LR1 for all categories except 
for grocery & pharmacy. Notably, the error is reduced by half for transit 
stations and residential locations, and the R-squared is improved by 0.1 
for the three Apple indices and 0.55 for Nishiki Market. The differences 
between LR2, ARIMAX, and RegARIMA then emphasize the various 
considerations of time series errors in the models. Different from the 
performance of in-sample forecast, RegARIMA produces the best per-
formance in terms of RMSE for four out of six Google mobility cate-
gories. For the other two Google indices, Apple indices, and WiFi 
indices, it usually produces the second-best performance. Furthermore, 
RegARIMA outperforms other models in terms of R-squared for ten out 
of twelve categories. For the two categories where it does not perform 
best, the gap is merely 0.02. We therefore conclude that RegARIMA is 
more suitable for forecasting future mobility trends under COVID-19 
interventions. 

We do note, however, that the differences in many cases are not very 
large. Among LR2, ARIMAX, and RegARIMA, the difference between the 
best and the worst model per category is usually within 3 units for RMSE 
and 0.1 for R-squared. The forecast capability of LR2 and ARIMAX is 
acceptable, even though, we remind our previous discussion that the 
former one fails to address the serial correlation and the policy magni-
tude obtained from the latter may be diluted and difficult to interpret. 

A closer look at the forecast performance of RegARIMA is given in 
Fig. 2 which illustrates the forecasted mobility trends. The policy win-
dows of containing and stimulating interventions are shaded by different 
colors, in-sample and out-of-sample windows are distinguished, and 
counterfactual estimates are introduced. The counterfactuals create the 
curves using the fitted models but assuming no policy is forced in the 
COVID-19 timeline. 

We observe that our model captures the drops due to the restrictive 
interventions and the rebounds provoked by the stimulating ones as well 
as the sightseeing seasons during the in-sample window. More impor-
tantly, it successfully forecasts the trends in the out-of-sample window. 
The out-of-sample window contains several weeks during the second 
State of Emergency from 28 January 2021 to 28 February 2021. The 
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initial days in the spring sightseeing season of 2021 are also included in 
this window. The acceptable forecast results for Google indices indicate 
that the effects of the second State of Emergency and the spring sight-
seeing season are properly measured. However, some concerns of un-
derestimation of general spring effects arise given the downward 
deviation of the forecasts from the observations at the end of the time-
line for the three Wi-Fi indices located at important attractions in Kyoto 
City. This underestimation is not surprising in that the spring effect is 
estimated from the spring of 2020 in the sample data. In the spring of 
2020 the sightseeing desire was reduced by the emerging risks of the 
pandemic and the mobility was partially restricted by soft interventions 
such as the Stay-at-home request. However, the spring of 2021 overlaps 
with a restriction-free period and is embraced by the rebounding travel 
desire. Accordingly, the forecast gap is more significant for the popular 
recreation places. 

6. Conclusion and further research 

In this paper, we shed light on the estimation of non-pharmaceutical 
intervention effects and the forecast of future mobility and activity 
trends for the ongoing COVID-19 pandemic with a regression model 
incorporating time series errors. We specify an ARIMA process of (1,0,0) 
for the errors and obtain interpretable estimates on the effects, in light of 
the classical intervention models proposed by Box and Tiao (1975) and 
Tsay (1984). Our model also succeeds to forecast future trends at an 
acceptable accuracy. The model is tested by twelve activity and mobility 
indices including nine of them published by Google and Apple at pre-
fecture level based on the usage of their digital map services. Google’s 
indices are broken down into activity categories while Apple’s are spe-
cific to transport modes. The remaining three are processed by our own 
data at critical places in the city. We are therefore presenting overviews 
on the policy effects at city level and closer looks at some specific places. 

We confirm the restriction effects of containing policies on mobility 
trends and show that the effects of the recurrence of an intervention or 
an event may be substantially different. We demonstrate the fading- 
away effect by comparing the estimated effects of the first and second 
State of Emergency. One may expect the effect to be further declining for 
the third and fourth times so that reduced coefficients might be used to 
forecast the future trends. However, the decay is not likely to be linear so 
that the reduced policy effect is ambiguous. Moreover, the concurrence 
with other unexperienced events and the upgrade of the policy itself may 
make the effect on mobility trends more unpredictable. This is more of 
concern for out-of-sample forecasting than for in-sample estimation. 
Similar issues exist for the seasonal effects. As a lesson learned from the 
estimation on the spring effect, the rebounding effect caused by con-
taining interventions should be considered. This can be resolved to some 
extent by taking the data from previous normal years into account, 
though Google and Apple mobility reports are unfortunately not avail-
able for times before January 2020. 

We demonstrate people’s reactions to the implemented interventions 
by using Google trends data that help to enrich the exogenous variables. 
This improves the forecast accuracy of the model. The online searches 
for a policy indicate people’s attention, though, their attitudes and 
behavioral connections to it are not clear. For future work we suggest 
that search frequency and a “population sentiment analysis” based on, 
for example, Twitter data could be used to further improve the model-
ling of the population adaptation process. 

Japan was among the first countries to implement “reverse in-
terventions” to stimulate domestic travel demand. These interventions 
have the potential to help the recovery of the economy, however, at the 
risk of accelerating the virus spread. We confirm their motivating effects 
on mobility, especially for the stage with a more favorable discount to 
travel expenses. For further work, we recommend investigations into the 
interactions among pandemic cases, mobility trends, and economic in-
dicators in terms of correlation and causation. 

The effect of vaccination is excluded in this paper by cutting the 
studied timeline before the national and regional vaccination rates 
exceed 1% of the associated population. After the studied timeline in this 
paper, Japan entered the third State of Emergency from 25 April 2021 to 
11 May 2021, which involves four prefectures as Tokyo, Kyoto, Osaka, 
and Hyogo. Tokyo and Okinawa entered the fourth one initially sched-
uled from 12 July to 22 August, partly in response to the Summer 
Olympic Games. The fourth one was extended to 30 September 2021 and 
expanded to several other prefectures including Kyoto. Meanwhile, the 
vaccination rate was increasing fast and had reached 65.10% (55.50% 
fully vaccinated) by the end of September in Kyoto (Government CIO 
portal, 2021). It then gradually increased to 72.99% (72.42% fully 
vaccinated) in the middle of January 2022. Given such a mixture of 
interventions, we hope that extensions of this work, including a longer 
timeline, could help to also clarify the effect of vaccinations on the 
population’s mobility and activity. Given “COVID tiredness” and less 
risk perception among the vaccinated population we suspect that the 
effect of policy interventions is declining compared to our model 
estimates. 
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Appendix B. Autocorrelation in the residuals of the models 

Fig. 3 
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Fig. 3. Autocorrelation in the residuals of LR2, ARIMAX, and RegARIMA.  
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Appendix C. Estimation results of benchmark models 

Tables 5–7 

Fig. 3. (continued). 
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Table 7 
Estimation results of ARIMAX, significance codes: p-Value ≤ 0.01***, 0.05**, 0.1*   

Google Mobility Index (%) Apple Mobility Index (%) WiFi Mobility Index (%) 

Retail & recreation Grocery & pharmacy Parks Transit station Workplace Residential Driving Transit Walking Kiyomizu Temple Nishiki Market Kyoto Station 

Daily new cases  − 2.58***  − 0.12  − 5.41***  − 6.02***  − 3.76*** 1.85***  − 0.65  − 1.36  − 1.32*  − 5.11***  − 2.04***  − 2.33*** 
Weather 
Temperature (◦C)  0.02  0.14***  0.63***  − 0.07  − 0.03 − 0.01  0.07  − 0.11  0.05  − 0.11  − 0.05  0.21*** 
Precipitation (mm)  − 0.17***  − 0.18***  − 0.71***  − 0.11***  − 0.06 0.06***  − 0.01  0.03  − 0.04  − 0.29***  − 0.01  0.01 
Seasonal and calendar effects 
Weekend  − 1.75**  0.73  − 5.32***  − 7.46***  0.45 − 1.01***  2.41*  6.35***  4.44***  5.40***  − 0.32  − 4.44*** 
Holiday  8.75***  − 0.57  27.16***  − 11.65***  − 39.03*** 9.66***  − 10.59***  − 12.76***  − 10.56***  11.05***  − 7.17***  − 2.98** 
Spring  5.32***  3.11**  22.80***  5.49***  5.09*** − 2.15***  3.87  4.30  1.71  10.79***  1.82  6.25*** 
Autumn  1.97  0.89  8.34**  3.59***  3.34 − 1.11*  0.67  0.77  − 0.27  8.36***  − 0.57  − 0.90 
Policies 
Stay-at-home  − 5.49***  − 0.82  − 3.99  − 7.75***  − 2.71 1.99***  − 5.27  − 5.66  − 4.61  − 8.21**  − 5.97**  − 6.87*** 
State of Emergency(1)  − 17.03***  − 3.31***  − 6.84***  − 16.69***  − 8.22*** 5.00***  − 7.49**  − 6.24  − 6.40**  − 15.50***  − 8.46***  − 17.74*** 
State of Emergency(2)  − 6.19***  − 4.33**  − 2.54  − 1.36  4.44** − 1.38**  − 2.40  − 2.88  − 1.53  − 6.13  − 4.01  − 5.61** 
Go-to-travel(1)  1.05  − 4.66  − 3.20  11.71***  8.43 − 4.57**  11.02  9.85  8.88  − 0.46  3.28  2.41 
Go-to-travel(2)  4.89***  0.60  17.17***  11.79***  7.26*** − 3.75***  6.49  8.93  7.30  10.56**  5.93**  5.31** 
Time series terms 
AR(1)φ1   0.36***  0.26***  0.23***  0.35***  0.27*** 0.27***  0.82***  0.87***  0.87***  0.74***  0.79***  0.58*** 

Variance (σε)
2   29.72***  22.93***  170.44***  23.33***  34.40*** 2.95***  131.93***  211.65***  93.71***  166.94***  67.07***  37.65*** 

Model fit 
AIC  2189.70  2099.65  2795.76  2105.70  2240.48 1388.33  2706.90  2870.91  2588.21  2788.56  2472.15  2271.81 
BIC  2243.59  2153.54  2849.65  2159.59  2294.37 1442.22  2760.79  2924.80  2642.10  2842.45  2526.04  2325.70 
RMSE  6.22  5.14  13.82  5.68  6.40 1.86  19.19  27.48  17.29  19.80  12.69  7.97 
R-squared  0.73  0.26  0.59  0.83  0.79 0.83  0.54  0.52  0.70  0.74  0.68  0.82  
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